

Two Stage Regenerative Turbine Pump

>> TECHNOLOGY INNOVATION & RELIABILITY

Our high-performance pump solutions are designed to meet the demands of various fluid-handling applications. Our Two Stage Regenerative Turbine Pumps are engineered with precision and innovation to deliver reliable and efficient performance.

>> BENEFITS

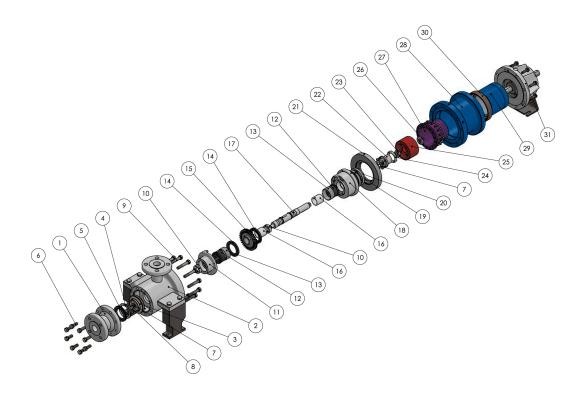
NPSH Optimisation: designed with careful consideration of Net Positive Suction Head (NPSH) to prevent cavitation, ensuring prolonged pump life and enhanced reliability

Self-Priming Capability: these self-priming pumps can effortlessly handle air and gases, eliminating the need for manual priming and ensuring quick and reliable operation

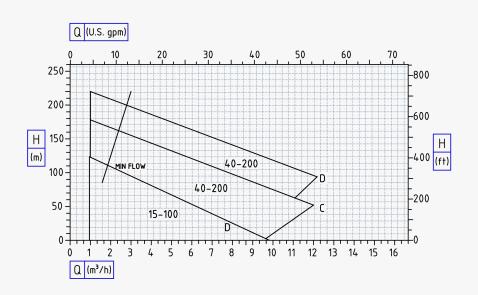
Efficient Cavitation Prevention: prevention of cavitation thanks to optimised NPSH levels and advanced design features

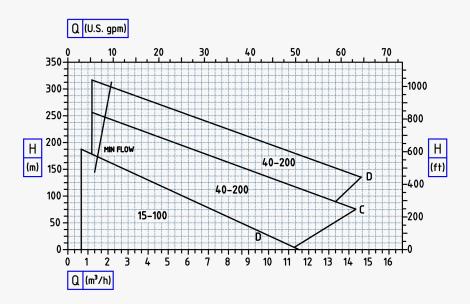
Robust Construction: built with durability in mind, featuring robust construction materials such as Stainless Steel to withstand challenging operating conditions and ensure a long service life

HIGH HEAD - LOW NPSH


Suitable for liquefied gas, condensate hydrocarbons, ammonia and cryogenic liquids.

- Flows up to 14m³/hr
- Heads up to 400m
- NPSH required less than 1m
- API 685, barrel type, end suction, top discharge, centreline mounted

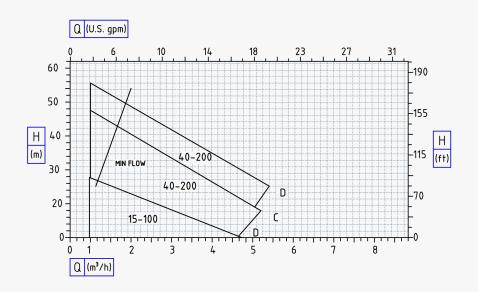

Ref.	Description	Ref.	Description			
1	Front flange	17	Shaft			
2	Pump casing	18	Rear ring			
3	Centrifugal impeller	19	Front conical ring			
4	Centrifugal impeller thrust bearing	20	Rear conical ring			
5	Front thrust bearing	21	Rear casing adaptor plate			
6	Front flange screw	22	Inner magnet ring flange			
7	Nut lockwasher	23	Rear nut			
8	Ogive	24	Rear impeller ring			
9	Pump casing screw	25	Inner magnet			
10	Spacer	26	External magnet nut lockwasher			
11	Front ring	27	Containment shell			
12	Stationary bearing	28	Bracket			
13	Stationary bearing ring	29	External magnet ring			
14	Thrust bearing	30 Rub ring				
15	Turbine impeller	31 Bearing frame				
16	Sleeve bearing					

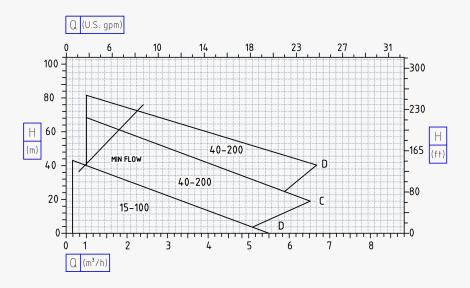


Design Curves

» Alloy Double Stage Turbine Pump 2900 rpm 50hz

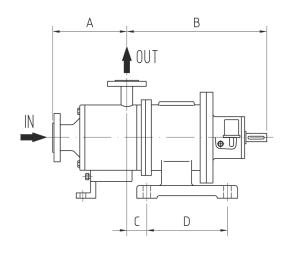
» Alloy Double Stage Turbine Pump 3500 rpm 60hz

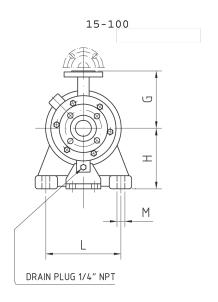


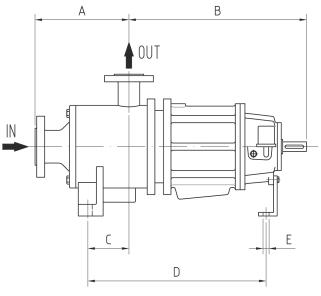


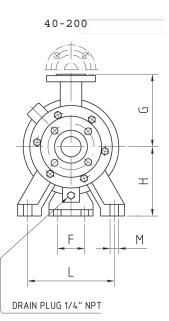
Design Curves

Alloy Double Stage Turbine Pump 1450 rpm 50hz

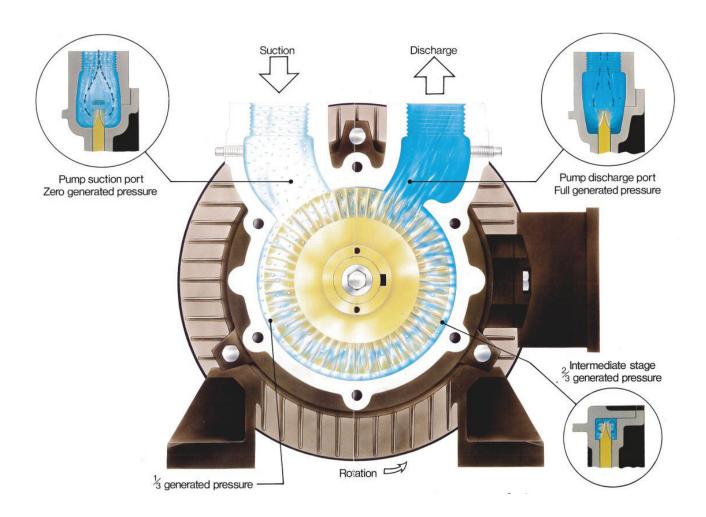

» Alloy Double Stage Turbine Pump 1750 rpm 60hz







Overall Dimentions



PUMP	OVERALL DIMENSIONS							PORTS FLG		mm inches			
TYPE	Α	В	С	D	Е	F	G	Н	L	М	SUCT.	DISCH.	WEIGHT
	162 6"3/8	395 15"1/2	56 2"1/4	250 9"7/8	\times	\times	135 5"3/8	175 6"7/8	220 8"5/8	14 1/2"	DN 40 DN 1"1/2	DN 25 DN 1"	40 kg 88 lbs
	203	536 21"1/8	75 3"	481	14 1/2"	110 4"3/8	185 7"1/4	6"1/4	190 7"1/2	14 1/2"	DN 50 DN 2"	DN 40 DN 1"1/2	135 kg 298 lbs

>> THE TURBINE REGENERATIVE PRINCIPLE

The regenerative turbine principles deliver efficient and reliable fluid handling. This technology offers a unique approach to fluid circulation, providing significant advantages over traditional Centrifugal Pumps:

Impeller Design:

- The impeller is a critical component designed with a multi-vane construction
- Liquid from the suction port is directed to both sides of the impeller at its perimeter

Centrifugal Force:

- The impeller's multi-vane construction, combined with its rotation, generates centrifugal force
- This force instantly throws the liquid outwards, creating a spiral regenerative action

Suction and Drawing Force:

- As the liquid enters the side channels of the pump casing, a strong drawing force is produced at the pump's suction due to the forward rotation of the impeller
- The liquid is rapidly returned to the root of the next impeller vane, initiating further re-engagement

>> REGENERATIVE TURBINE PRINCIPLES

Regenerative Action:

- The regenerative action continues, developing increased pressure with each cycle
- The liquid achieves its fully generated pressure and is sealed off from the suction side by a breaker, exiting the pump at the discharge port

Double-Faced Impeller:

- Each impeller is double-faced, enabling regenerative action on both sides
- This inherent balance contributes to a smooth and efficient pumping process.

Fluid Circulation:

- Fluid circulates through the impeller vanes multiple times, creating a circulatory flow
- This orderly flow generates fluid velocity, which can be converted into flow and pressure

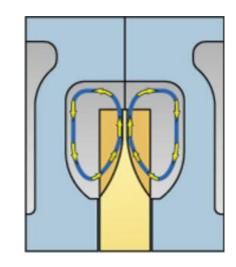
Regeneration Cycle:

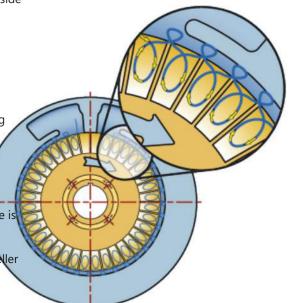
• The fluid, redirected by specially shaped fluid channels, cycles around the side of the impeller and re-enters the impeller vanes

 The regeneration cycle occurs many times, amplifying fluid velocity and pressure

Pressure Building Capability:

 The regenerative turbine design results in a pump with a pressure-building capability ten or more times that of a Centrifugal Pump with the same impeller diameter and speed


Impeller Floating Design:


 Our pumps feature a two-sided floating impeller design, ensuring pressure is built equally on both sides

 This design allows the pump pressure to hydraulically self-centre the impeller in the close clearance impeller cavity, avoiding excessive loads on motor bearings

Internal Clearances:

- Close internal clearances are maintained to prevent the loss of pressurebuilding capability
- These pumps are suitable for clean fluids and systems, and in some cases, a suction strainer can be employed for added protection

DOUBLE STAGE, LONG COUPLED CONFIGURATION

Double-Stage Long-Coupled Configuration is suitable for specific applications requiring a long-coupled design.

- API685 Standards compliance
- Double containment shell with a mechanical seal on the coupling housing
- NPSHa: 1.5m

